|
The Multivariate Adaptive Constructed Analogs(MACA)(Abatzoglou, Brown, 2011)
method is a statistical downscaling method which utilizes a training dataset
(i.e. a meteorological observation dataset) to remove historical biases and match spatial patterns in climate model output.
We have used MACA to downscale the model output from 20 global climate models (GCMs) of the Coupled Model Inter-Comparison Project 5 (CMIP5) for the historical GCM forcings (1950-2005) and the future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP8.5 scenarios (2006-2100) from the native resolution of the GCMS to either 4-km or ~6-km. The MACA dataset is unique in that it downscales a large set of variables making it ideal for different kinds of modeling of future climate (i.e. hydrology, ecology, vegetation, fire, wind). We currently have data for the following variables:
|
|
The MACA method is a statistical downscaling method for removing biases from global climate model outputs.
We have used MACA to downscale the model output from 20 global climate models (GCMs) of the Coupled Model Inter-Comparison Project 5 (CMIP5) for the historical GCM forcings (1950-2005) and the future Representative Concentration Pathways (RCPs) RCP 4.5 and RCP8.5 scenarios (2006-2100) from the native resolution of the GCMS to either 4-km or ~6-km. The MACA dataset is unique in that it downscales a large set of variables(temperature, precipitation, humidity, wind, radiation) making it ideal for different kinds of modeling of future climate (i.e. hydrology, ecology, vegetation, fire, wind). |